Particle ID

The following table lists the which_pieces of McMule as well as the corresponding PID. For example, when calculating the process \(\mu^+\to e^+\nu\bar\nu e^+e^-\), the measurement function may receive up to seven arguments that can be mapped to particles as follows:

FUNCTION QUANT(Q1,Q2,Q3,Q4,Q5,Q6,Q7)
real(kind=prec) :: q1(4) ! incoming muon+
real(kind=prec) :: q2(4) ! outgoing electron+
real(kind=prec) :: q3(4) ! outgoing neutrino, averaged over
real(kind=prec) :: q4(4) ! outgoing neutrino, averaged over
real(kind=prec) :: q5(4) ! outgoing electron-
real(kind=prec) :: q6(4) ! outgoing electron+
real(kind=prec) :: q7(4) ! outgoing optional photon

pol1 = (/ 0., 0., -0.85, 0. /) ! set incoming muon polarisation
...
END FUNCTION

Additionally to the particle mapping, we see that neutrinos are averaged over as indicated by \(\big[\bar\nu_\mu\nu_e\big]\). We can further tell that the first initial state particle is polarised since the P-column lists a 1.

which_piece

P?

\(p_1\) \(p_2\) \(p_3\) \(p_4\) \(p_5\) \(p_6\) \(p_7\)
m2enn0

1

\(\mu^+\) \(\to\) \(e^+\)
m2ennF

1

m2ennR

1

\(\mu^+\) \(\to\) \(e^+\) \(\gamma\)
m2ennFFz

1

\(\mu^+\) \(\to\) \(e^+\)
m2ennFF

1

m2ennLL

1

m2ennRF

1

\(\mu^+\) \(\to\) \(e^+\) \(\gamma\)
m2ennRR

1

\(\mu^+\) \(\to\) \(e^+\) \(\gamma\) \(\gamma\)
m2ennNF

1

\(\mu^+\) \(\to\) \(e^+\)
m2ej0

1

\(\mu^+\) \(\to\) \(e^+\) \(j\)
m2ejF

1

m2ejR

1

\(\mu^+\) \(\to\) \(e^+\) \(j\) \(\gamma\)
m2ejg0

1

m2enng0

1

\(\mu^+\) \(\to\) \(e^+\) \(\gamma\)
m2enngF

1

m2enngV

1

m2enngC

1

m2enngR

1

\(\mu^+\) \(\to\) \(e^+\) \(\gamma\) \(\gamma\)
m2ennee0

1

\(\mu^+\) \(\to\) \(e^+\) \(e^-\) \(e^+\)
m2enneeV

1

m2enneeA

1

m2enneeC

1

m2enneeR

1

\(\mu^+\) \(\to\) \(e^+\) \(e^-\) \(e^+\) \(\gamma\)
t2mnnee0

1

\(\tau^+\) \(\to\) \(\mu^+\) \(e^-\) \(e^+\)
t2mnneeV

1

t2mnneeA

1

t2mnneeC

1

t2mnneeR

1

\(\tau^+\) \(\to\) \(\mu^+\) \(e^-\) \(e^+\) \(\gamma\)
em2em0

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\)
em2emV

0

em2emC

0

em2emFEE

0

em2emFEM

0

em2emFMM

0

em2emREE

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\) \(\gamma\)
em2emREE15

0

em2emREE35

0

em2emREEco

0

em2emREM

0

em2emREM15

0

em2emREM35

0

em2emREMco

0

em2emRMM

0

em2emFFEEEE

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\)
em2emFFEEEEz

0

em2emFFMMMM

0

em2emFFMIXDz

0

em2emFF31z

0

em2emFF22z

0

em2emFF13z

0

em2emFFz

0

em2emRFEEEE

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\) \(\gamma\)
em2emRFEEEE15

0

em2emRFEEEE35

0

em2emRFEEEEco

0

em2emRFMMMM

0

em2emRFMIXD

0

em2emRFMIXD15

0

em2emRF3115

0

em2emRF2215

0

em2emRF1315

0

em2emRFMIXD35

0

em2emRF3135

0

em2emRF2235

0

em2emRF1335

0

em2emRFMIXDco

0

em2emRF

0

em2emRF15

0

em2emRF35

0

em2emRFco

0

em2emRREEEE

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\) \(\gamma\) \(\gamma\)
em2emRREEEE1516

0

em2emRREEEE3536

0

em2emRREEEEc

0

em2emRRMMMM

0

em2emRRMIXD

0

em2emRRMIXD1516

0

em2emRR311516

0

em2emRR221516

0

em2emRR131516

0

em2emRRMIXD3536

0

em2emRR313536

0

em2emRR223536

0

em2emRR133536

0

em2emRRMIXDc

0

emZem0X

0

\(e^-\) \(\mu^+\) \(\to\) \(e^-\) \(\mu^+\)
emZemFX

0

emZemRX

0

em2emA

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\)
em2emAA

0

em2emAFEE

0

em2emAFMM

0

em2emAFEM

0

em2emAF

0

em2emAREE

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\) \(\gamma\)
em2emAREE15

0

em2emAREE35

0

em2emARMM

0

em2emAREM

0

em2emAR

0

em2emAR15

0

em2emAR35

0

em2emNFEEHYP

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\)
em2emNFMMHYP

0

em2emNFEMHYP

0

em2emNFHYP

0

em2emNFEEDISP

0

em2emNFMMDISP

0

em2emNFEMDISP

0

em2emNFDISP

0

em2emNFEMCT

0

em2emRFF

0

\(e^-\) \(\mu^-\) \(\to\) \(e^-\) \(\mu^-\) \(\gamma\)
mp2mp0

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\)
mp2mp0nuc

0

mp2mpF

0

mp2mpFMP

0

mp2mpR

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(\gamma\)
mp2mpRMP

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(y\)
mp2mpR15

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(\gamma\)
mp2mpR35

0

mp2mpRco

0

mp2mpRMP15

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(y\)
mp2mpRMP35

0

mp2mpRMPco

0

mp2mpFF

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\)
mp2mpRF

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(y\)
mp2mpRF15

0

mp2mpRF35

0

mp2mpRFco

0

mp2mpRR

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(\gamma\) \(\gamma\)
mp2mpRR1516

0

mp2mpRR3536

0

mp2mpRRc

0

mp2mpA

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\)
mp2mpAA

0

mp2mpAF

0

mp2mpAR

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\) \(\gamma\)
mp2mpAR15

0

mp2mpAR35

0

mp2mpNF

0

\(\mu^-\) \(p\) \(\to\) \(\mu^-\) \(p\)
ms2ms0

0

\(\mu^-\) \(12c\) \(\to\) \(\mu^-\) \(12c\)
ms2msF

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\)
ms2msR

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\) \(\gamma\)
ms2msR15

0

ms2msR35

0

ms2msRco

0

ms2msFF

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\)
ms2msRF

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\) \(y\)
ms2msRF15

0

ms2msRF35

0

ms2msRFco

0

ms2msRR

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\) \(\gamma\) \(\gamma\)
ms2msRR1516

0

ms2msRR3536

0

ms2msRRc

0

ms2msA

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\)
ms2msAA

0

ms2msAF

0

ms2msAR

0

\(\mu^-\) \(s\) \(\to\) \(\mu^-\) \(s\) \(\gamma\)
ms2msAR15

0

ms2msAR35

0

ee2tt0

4

\(e^-\) \(e^+\) \(\to\) \(\tau^-\) \(\tau^+\)
ee2ttF

0

ee2ttR

0

\(e^-\) \(e^+\) \(\to\) \(\tau^-\) \(\tau^+\) \(\gamma\)
ee2ttA

0

\(e^-\) \(e^+\) \(\to\) \(\tau^-\) \(\tau^+\)
ee2mm0

2

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\)
eeZmm0

2

eeZmm0X

2

ee2mmF

0

ee2mmFEE

0

ee2mmFEM

0

ee2mmFMM

0

eeZmmFX

0

ee2mmR

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\) \(\gamma\)
ee2mmREE

0

ee2mmREM

0

ee2mmRMM

0

eeZmmRX

0

ee2mmFFz

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\)
ee2mmFFEEEE

0

ee2mmFFMIXDz

0

ee2mmFFMMMM

0

ee2mmRF

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\) \(\gamma\)
ee2mmRFEEEE

0

ee2mmRFMIXD

0

ee2mmRF31

0

ee2mmRF22

0

ee2mmRF13

0

ee2mmRFMMMM

0

ee2mmRR

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\) \(\gamma\) \(\gamma\)
ee2mmRREEEE

0

ee2mmRRMMMM

0

ee2mmRRMIXD

0

ee2mmRR31

0

ee2mmRR22

0

ee2mmRR13

0

ee2mmA

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\)
eeZmmAX

0

ee2mmAA

2

ee2mmAFEE

0

ee2mmAFEM

0

ee2mmAFMM

0

ee2mmAF

0

ee2mmAREE

0

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\) \(\gamma\)
ee2mmAREM

0

ee2mmARMM

0

ee2mmAR

0

ee2mmNFEEHYP

2

\(e^-\) \(e^+\) \(\to\) \(\mu^-\) \(\mu^+\)
ee2mmNFMMHYP

0

ee2mmNFEEDISP

0

ee2mmNFEMDISP

0

ee2mmNFMMDISP

0

ee2mmNFDISP

0

ee2nn0

0

\(e^+\) \(e^-\) \(\to\) \(\nu\) \(\nu\)
ee2nnF

0

ee2nnR

0

\(e^+\) \(e^-\) \(\to\) \(\nu\) \(\nu\) \(\gamma\)
ee2nnS

0

\(e^+\) \(e^-\) \(\to\) \(\nu\) \(\nu\)
ee2nnSS

0

ee2nnCC

0

ee2nnRF

0

\(e^+\) \(e^-\) \(\to\) \(\nu\) \(\nu\) \(\gamma\)
ee2nnRR

0

\(e^+\) \(e^-\) \(\to\) \(\nu\) \(\nu\) \(\gamma\) \(\gamma\)
ee2ee0

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\)
ee2eeA

0

ee2eeF

0

ee2eeR

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\) \(\gamma\)
ee2eeR125

0

ee2eeR345

0

ee2eeR35

0

ee2eeR45

0

ee2eeR345co

0

ee2eeR35co

0

ee2eeR45co

0

ee2eeRF

0

ee2eeRF125

0

ee2eeRF345

0

ee2eeRF35

0

ee2eeRF45

0

ee2eeRF345co

0

ee2eeRF35co

0

ee2eeRF45co

0

ee2eeRR

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\) \(\gamma\) \(\gamma\)
ee2eeRR15162526

0

ee2eeRR35364546

0

ee2eeRR35364546c

0

ee2eeFF

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\)
ee2eeFFdz

0

ee2eeAA

0

ee2eeAF

0

ee2eeAR

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\) \(\gamma\)
ee2eeAR125

0

ee2eeAR345

0

ee2eeAR345co

0

ee2eeNFHYP

0

\(e^-\) \(e^-\) \(\to\) \(e^-\) \(e^-\)
ee2eeNFTRHYP

0

ee2eeNFBXHYP

0

ee2eeNFDISP

0

ee2eeNFTRDISP

0

ee2eeNFBXDISP

0

eb2eb0

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\)
eb2ebA

0

eb2ebF

0

eb2ebR

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\) \(\gamma\)
eb2ebR125

0

eb2ebR35

0

eb2ebR45

0

eb2ebR125o

0

eb2ebR35o

0

eb2ebR45o

0

eb2ebR35co

0

eb2ebR45co

0

eb2ebFF

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\)
eb2ebFFdz

0

eb2ebRF

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\) \(\gamma\)
eb2ebRF125

0

eb2ebRF35

0

eb2ebRF45

0

eb2ebRF35co

0

eb2ebRF45co

0

eb2ebRR

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\) \(\gamma\) \(\gamma\)
eb2ebRR15162526

0

eb2ebRR3536

0

eb2ebRR3536c

0

eb2ebRR4546

0

eb2ebRR4546c

0

eb2ebRR15162526o

0

eb2ebRR3536o

0

eb2ebRR4546o

0

eb2ebAA

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\)
eb2ebAF

0

eb2ebAR

0

\(e^-\) \(e^+\) \(\to\) \(e^-\) \(e^+\) \(\gamma\)
eb2ebAR125

0

eb2ebAR35

0

eb2ebAR45

0

eb2ebAR345co

0